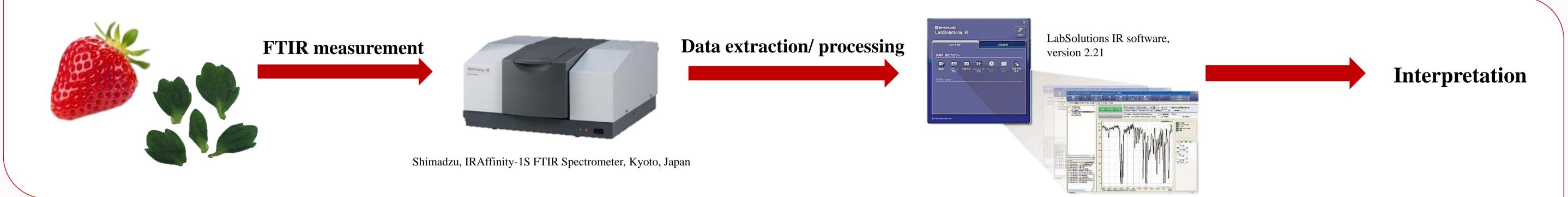


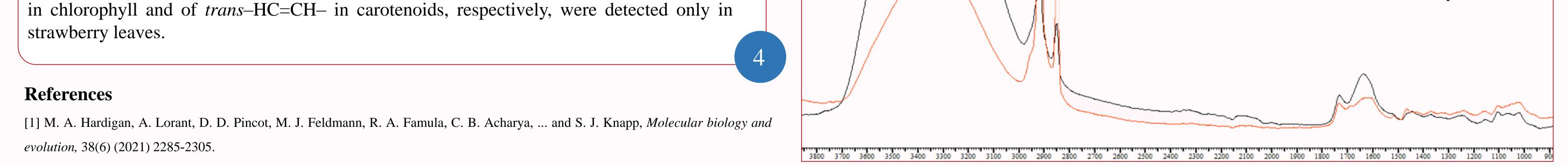
Comparative evaluation of strawberries fruits and leaves using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy Georgia Ladika¹, Ioanna Stephanaki¹, Alexandros-George Ioannou¹, Irini F. Strati¹, **Dionisis Cavouras^{2*}** and Vassilia J. Sinanoglou ^{1*}

Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece.


² Department of Biomedical Engineering, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece

E-mail: corresponding-authors, <u>cavouras@uniwa.gr</u>, <u>vsina@uniwa.gr</u>

Introduction


The strawberry is one of the most economically important fruits worldwide and is characterized by unique organoleptic properties and important nutritional value. The cultivated strawberry (Fragaria x ananassa), one of the newest domesticated plants, cultivated since the early 18th century in Europe [1]. The present study was conducted to evaluate comparatively the phytochemicals profile from strawberry (Fragaria × ananassa) fruits and leaves using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). ATR-FTIR is a widely used, rapid, direct and nondestructive analytical technique to identify the functional groups present in plant materials and to elucidate the structure of their phytochemical constituents. The interpretation of ATR-FTIR spectra bands, ranged among 4000-499 cm⁻¹, revealed the presence of characteristic compounds in fruits and leaves of strawberry, such as physical pigments, aromatic compounds, esters, polyphenols, and carbohydrates. The most important findings are summarized below. Therefore, ATR-FTIR technique can successfully and non-destructively evaluate the phytochemical profile of fruits and vegetables, finding significant applications in their quality control.

Materials and Methods

Results and Discussion

Regions (cm ⁻¹)	Functional group/assignment	Strawberry fruits' intensities	Strawberry leaves' intensities	Regions (cm ⁻¹)	Functional group/assignment	Strawberry fruits' intensities	Strawberr leaves' intensities
3600-3645	O-H stretch Nonbonded hydroxyl group	-	0.014 ± 0.002	1417-1420	C-H rocking and O-H bending vibrations	-	0.006±0.00
3380-3385	presence of bonded N–H/O–H stretching of amines and amides/alcohols and hydroxyl compounds	0.006±0.001	0.003±0.001	1350-1378	Bending vibrations of CH ₂ groups terminal (CH ₃) groups symmetric bending or O-H bending vibration of the C-OH group	0.017±0.004	0.006±0.00
2954	C-H Asymmetric stretching vibration of methyl-group CH ₃ of acyl chains of lipids and chlorophyll	_	0.013±0.003	1230-1245	stretching vibration of C–O ester groups in esters, polysaccharides, glycosylated anthocyanins and organic acids	0.046±0.006	0.013±0.0
2916-2920	Asymmetric CH ₂ stretching mode of the methylene chains in lipids and chlorophyll	0.317±0.040	0.792 ± 0.022	1143- 1155	C–O stretching of carbohydrates equivalent to v(C-O- C) glycosidic bound	0.023±0.009	0.020±0.0
2848-2855	symmetrical C-H stretching vibrations of methyl CH_3 and methylene CH_2 groups of lipids or chlorophyll	0.181±0.030	0.605±0.023	1100-1105	C-O stretching in secondary alcohols and/or the stretching of the C–O band of the C–O–C linkage in polysaccharides	0.058±0.011	0.029±0.0
1730-1742	carbonyl (–C=O) stretching vibration of ester group in chlorophyll and triglycerides	0.111 ± 0.014	0.103±0.013	1049-1055	C-O stretching attributed to sucrose	0.011±0.003	0.008 ± 0.0
1687	carbonyl (C=O) stretching vibration of ketone group in chlorophyll	-	0.019±0.005	1022-1033	C-O stretching in primary alcohols and/or pyranose ring of glucose	0.068±0.013	0.017±0.0
1630 - 1647	C=C stretching vibration of cis-olefins or bending vibrations of hydroxyl groups of water, carbohydrates, organic acids and phenols	0.171±0.012	0.007 ± 0.002	966-968	[-HC=CH- (trans) bending] olefin reflector outside stretching vibration peak δ (-HC=CH-, trans-) out-of-plane deformation	_	0.009±0.0
1510-1520	C=C-C Aromatic ring stretch	0.010 ± 0.005	0.014±0.003		cis –HC=CH– group of disubstituted olefins out-of-plane		
1472	bending vibrations of –CH ₂ –	-	0.016±0.005	720-750	bend	0.004 ± 0.002	0.016±0.0
1457-1465	scissoring bending vibrations of the CH_2 and CH_3 aliphatic groups or monosaccharides	0.020±0.006	0.038±0.002	610-680 523	Alkyne C-H bendin-plane bending β (C-C-C), β (C-O-C) in glycosidiclinkage	0.001±0.001 0.009±0.002	-
2854, 1472 and	related to C(sp ³)-H stretching and bending vibrat d 1462 cm ⁻¹ , which are associated with the prese ounds, exhibited significant higher intensities in	nce of chlorophy	11 [2] and	esters, org	at 1238, 1105 and 1030 cm ^{-1} which are related to the sanic acids and carbohydrates [4], displayed signits than in leaves.	U	
	630 and 1687 cm ⁻¹ , which are corresponded to the choice group in chlorophyll, respectivel ves.	•					
-	ibration of hydroxyl group (O-H), present in wate her intensities in strawberry fruits than in leaves.	er at 1635 cm ⁻¹ [3], showed				
	420 and 966 cm ⁻¹ which are related to the bending						ry's leaves ry

[2] X. Li, R. Zhou, K. Xu, J. Xu, J. Jin, H. Fang and Y. He, *Molecules*, 23(5) (2018) 1010.

[3] P. Minutti-López Sierra, T. Gallardo-Velázquez, G. Osorio-Revilla and O. G. Meza-Márquez, CyTA-Journal of Food, 17(1) (2019) 724-732.

[4] A. G. Ioannou, E. Kritsi, V. J. Sinanoglou, D. Cavouras, T. Tsiaka, D. Houhoula, ... and I. F. Strati, Analytical Letters, (2022) 1-18.